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Flux pinning by thin planar defects 
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Planar defects, specifically grain boundaries, are now recognized as a major source of 
flux pinning in many materials, including the commercial A -15  superconductors. 
Unfortunately little theoretical attention has been devoted to the interaction between a 
planar pinning centre and the flux line lattice (F LL) of a type II superconductor. A 
Ginzburg-Landau perturbational approach is used here to calculate the pinning force per 
unit area exerted by a thin isolated planar defect upon the FLL. The pinning force is 
considered to arise from electron scattering at the defect plane, which creates a pertur- 
bation in the Ginzburg-Landau parameter, ~. The method of approach is of general 
applicability, however, and is easily adapted to other pinning mechanisms encompassed 
by the perturbational formalism. Second order terms in the FLL energy are retained, as 
well as all significant higher order terms in the Fourier transforms both of the super- 
conducting electron density I~12, and of I@[ 4. It is shown that a large error results, except 
at very high fields, if the above terms are ignored. The functional dependence of the 
elementary pinning force on temperature and field are shown to vary somewhat with the 
nature of the material and the pinning defect. 

1. Introduction 
Flux pinning at point defects, that is defects con- 
siderably smaller than the coherence length, ~, has 
for some period of time been the subject of 
advanced theoretical analysis. The elementary 
pinning force of some pinning centres such as 
small voids [1-3]  and dislocation loops [4, 51, 
for example, may now be calculated with some 
degree of confidence. However, relatively little 
attention has been paid to planar defects, pinning 
centres which are much thinner than ~ but which 
extend many flux line lattice (FLL) spacings in 
height and breadth. An important example of 
such a centre is the grain boundary; grain bound- 
aries have attracted much recent attention because 
of a growing realization of their role as the pri- 
mary pinning centres in the technologically 
important A-15  materials such as NbaSn. Other 
examples include thin plate-like precipitates, dis- 
location cell walls, interphase boundaries, or 
artificially introduced thin metallic or insulating 
layers. 

For the purposes of this article the source of 
flux pinning will be taken to be electron scattering 
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off the pinning plane; such scattering will create 
a perturbation in the Ginzburg-Landau parameter, 
K. However any mechanism which may be incor- 
porated into the Ginzburg-Landau perturbational 
formalism may easily be included in the following 
treatment. The motivation for focusing on elec- 
tron scattering is two-fold: 

(a) Zerweck [6] has shown that the perturba- 
tion in ~ near a planar scattering centre may be 
large and far ranging, and 

(b) a strong case may be made [7] for con- 
sidering electron scattering to be the major source 
of high-angle grain boundary pinning in most 
"dirty" materials. 

Because a perturbational method is used, only 
a small variation in n is allowed; this is not strictly 
the case for many real defects, such as grain 
boundaries. The local magnetic field and the super- 
conducting wave function, t), are assumed to be 
insignificantly perturbed. In the present treatment 
a perfectly rigid FLL is assumed. Specifically, the 
FLL is not allowed to deform in the plane normal 
to the field direction or bend away from the field 
direction. Such a restriction is of course highly 
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unrealistic; an undistorted flux lattice cannot even 
be pinned by randomly distributed pinning centres 
[1]! 

The reader should bear in mind that the ele- 
mentary pinning force per unit area of pinning 
plane, fp, is being calculated here and not the 
experimentally measured global pinning force Fp. 
Fp depends not only on fp, but also upon the pro- 
cess of force summation which occurs when the 
elastically interconnected lattice of fluxoids inter- 
acts with an array of pinning planes. The summa- 
tion process is poorly understood, so direct Com- 
parison with experiment cannot be made except in 
a very few cases where measurements on single 
grain boundaries have been performed [8]. It is 
hoped that specimen preparation techniques will 
be found in the future to permit the study of flux 
pinning by single grain boundaries in a variety of 
materials, and with a variety of boundary struc- 
tures. Once it is shown that planar pinning forces 
may be calculated with a reasonable degree of 
confidence an empirical pinning summation curve 
may be constructed, as has been clone for point 
pinning [9]. 

Even in the case of multiple pinning planes, 
however, many properties offp,  such as the depen- 
dence of the pinning force on material, impurity 
level [7], the structure of the defect plane, or 
temperature, should be observable in a qualitative 
fashion, despite the summation problem. If noth- 
ing else, fp should define the upper limit of Fp per 
unit area of pinning plane. 

2. The calculation of the elementary 
pinning force 

The defect-induced perturbation in FLL energy, 
fiE(r), may be written [1] in either the form 

5gcz(r,) i@(r_r,)12 
E 

1 5KZ(r ') ) 
+ 2 K 2 I f f ( r - - r ' ) l  4 dr', (1) 

o r  

~E(r) = f ,  UoH~ Hc 

x I~(r -- r')12 + ~K(r'__~) 
g 

x t~.,(r--r')[ 4 } dr', (2) 

where r is the displacement of the FLL origin 
(chosen for convenience as the centre of a fluxoid) 
from the co-ordinate origin located on the pinning 
plane, P0 is the permeability of free space, H e is 
the thermodynamic critical field and He2 is the 
upper critical field; the integration is performed 
over all values of the position vector r'. If we con- 
sider only the electron scattering component, 
Equation 2 reduces to 

6E(r) l 5K(r') [2 6K(r') 
- )'r' - I f f ( r - r ' )  4 

p o l l  c K K 

x [O(r -- r')14 dr'. (3) 

Direct evaluation of Equation 3 is quite awkward, 
but if the equation is cast in terms of the Fourier 
transforms of the order parameter and 5K/K it may 
be reduced to a simple form [10]. By invoking the 
convolution theorem in three dimensional space 
Equation 3 becomes 

6E(r) 
- j" 73(g){q52 (g) -- q~4(g)} exp (ig. r) dg. 

p0H2e 
(4) 

Here the integral is over all reciprocal space; 3'3 is 
the three-dimensional Fourier transform Of 
(--  6t~/t~), cb2 is the transform of I~ 12 , and q~4 is 
the transform of I~ i 4 . 

Let the lattice vectors, gv, of the reciprocal 
FLL be defined with the aid of Fig. 1. The basis 
vectors for the real space lattice are a and b, chosen 
as shown, with magnitudes 

[al -- Ibl-=ao = (2 0o/(3)1/2B) 1/2, (5) 

where ao is the fluxoid spacing, r is the magnetic 
flux quantum and B is the macroscopic magnetic 
flux density. If2 is defined as a unit vector normal 
to the plane of Fig. 1, and so parallel to the 
applied field, then the reciprocal FLL basis vectors 
may be defined as: 

b xs  47r 
gl = 2n 2' Ig~i (6) a-lJ X (3)1/2 ao 

and 

a x ~  
g2 = 2 r r - -  ]g2[ = Igtl (7) 

a ' b  x f~ ' 

One may express I r  t: and I'r 4 as cosine series 
summed over the gu of the reciprocal FLL: 

I(;(r)l 2 = ~" % (1- -  cos (gv - r)), (8) 
v s e o  

I~(r)l 4 = ~ b~cos(gv-r).  (9) 
/,'=0 

2793 



~ O - ~ 2 n d  Shell 
I 
I / I st Shell 

I , 

a- 0 �9 
�9 �9 g~ 

�9 �9 �9 

sh 

�9 �9 

]~ ~, 0 - -  Reciprocal Lattice 
. �9 - -  Real-Space Lattice 

Figure 1 The real-space and reciprocal space flux line 
lattices, oriented so that gl is normal to the defect plane, 
i.e. Orientation "1 ". 

Note that in Equation 8 gv -- 0 is excluded. The 
coefficients av and b v are given in the Appendix. 
The av have been calculated by Brandt [1 1] and 
the bv are derived in the Appendix. Both coef- 
ficients are functions of  the reduced magnetic 
induction (h =B/Be2 , where Be2 =Porte2).  It is 
convenient to define "shells" in the reciprocal 
FLL, each shell representing a set of reciprocal 
lattice points located at a common radius from the 
origin as shown in Fig. 2. Since all the av and by 
corresponding to gv of equal magnitude are equal, 
the Fourier coefficients may be indexed by shell. 
For example, a(n) equals the av corresponding to 
any gv vector in the nth  shell. 

The Fourier transforms (in three dimensions) 
of  the various terms in Equations 8 and 9 are: 

~-(cos (gv" r)) = (err) 3n {18(g + gv) 

+ 18(g -- gv)}, (10) 
and 

~'-(1) = (2rr) a/2 8(g), (11) 

where 6 is the Dirac delta function. Using Equa- 
tions 8 to 11 one may write the Fourier transforms 
of  IV[2 and [~14 as 

~2 - Y ( I ~ I  2) = (27r) 3n Z av {8(g) 
y e a  

- -  16 (g + gv) - -  18 (g - - g v ) }  (12) 
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Figure 2 The reciprocal flux line lattice, showing the shell 
notation used to classify the reciprocal lattice vectors gv. 

and 

~,. -= ~(1~14) = (2~r) 3'= Y b. {�89 ( g + g . )  
P=O 

+ 16(g -- gv)}. (13) 

Equation 4 may now be written as 

6E(r) _ (2~)3nfg ~3(g)[~oaV{8(g ) _ 1 8 ( g  + gv) 
~on~ 

- - � 8 9  ~ bv{18(g+gv) 
v--O 

(g -- gv)} 1 exp (ig.  r) dg. (14) + I 

The development up to this point makes no assum- 
ptions about the geometry of the defect. Now, 
however, the planar nature of  the pinning centre 
may be invoked to simplify Equation 14. The defect 
plane is defined as coincident with the plane x = 0 
and of infinite extent in that plane. The pertur- 
bation in K is constant over any plane parallel to 
the defect plane but falls off  rapidly along the 
x-axis. Thus the transform of  the perturbation will 
possess a rod-like form, such that 3'3 is non-zero 
only for g vectors located along a line in reciprocal 
space which passes through g = 0 and is normal to 
the defect plane. This in turn means that non-zero 
terms may result in Equation 14 only (a) if the 
FLL is oriented such that the fluxoid line direc- 
tion (i.e. the field direction) is parallel to the defect 



plane, and (b) if at least one of the reciprocal 
lattice vectors gu is normal to the plane. These 
conditions may be relaxed somewhat for a finite 
pinning plane (see Section 3.2). 

For a very large pinning plane the above restric- 
tions might at first seem to rule out the possibility 
of observing planar pinning experimentally. How- 
ever since real pinning planes are imperfect, and 
since the FLL is not rigid but may bend and dis- 
tort, a FLL which is slightly misoriented will inter- 
act weakly with the defect and will experience a 
torque tending to rotate it into alignment. Pinning 
defects in other parts of the specimen may place 
quite different orientational constraints on the 
FLL, in which case "grain boundaries" in the FLL, 
either pre-existing or newly formed, would allow 
local alignment. Such FLL grain boundaries have 
been observed [12] in a FLL pinned by crystal 
grain boundaries. It is reasonable to presume, with 
Evetts [13], that a continuous "recrystallization" 
of the FLL should occur during flux flow. 

What if the FLL misorientation is not small and 
the FLL is pinned only weakly? Motion of the FLL 
will occur when the applied driving force J • B 
exceeds this weak pinning force. Because the FLL 
is composed of many "grains" rotated at various 
orientations around the field axis, new sections of 
the FLL will encounter the defect plane at (eventu- 
ally) all possible orientations as they sweep through 
the plane. The FLL will become repinned when a 
"better" orientation arrives at the pinning plane. 
Thus the experimentally measured pinning force 
corresponds to the optimum possible orientation. 
For this reason only the orientation producing the 
largest fie need be considered. "Orientation 1", 
which is shown in Fig. 1, is the optimum pinning 
orientation for most materials and fields; in 
Orientation 1 g~ is normal to the pinning plane. 
"Orientation 2", rotated 30 ~ with respect to 
Orientation 1, usually produces pinning larger near 
h = 0.3 ; in Orientation 2 (gl + g2) is normal to the 
defect plane. 

Since the integral of Equation 14 vanishes 
except where g equals one of a set of gv located 
along the x-axis, the integral may be reduced to 
a one-dimensional integral and the summation over 
v may be limited to the shells which contain gv 
vectors normal to the pinning plane. Using the 
shell notation, let p(n) represent the above set of 
gv vectors. For Orientation 1 the relevant shells will 
be the set n = n '  = 1,3, 5, 8 . . .  and the p(n) will 
be integral multiples of  g~. For Orientation 2 the 

relevant shells will be n = n " =  2,6,  12 . . .  and 
the p(n) will be integral multiples of (gt + g2 ). 

Equation 14 for Orientations 1 or 2 therefore 
becomes 

8~(r) 
Porte: 

(2703/2[( ~ a(n)l" exp (ig . r) 3,3 (g) 
L | n',n" "gll~. 

x [6(g) -- 5 (g + p(n)) -- 6 (g -- p(n))] dg / 
1 

-- boJ'gr1173 (g)5 0g) x exp (ig" r)dg 

-- {n~n,ff(n) f gll l exp (ig'r) 3,3(g) 

x [8(g + p(n)) + 6 (g--p(n))]  dg/1.(15) 

In evaluating Equation 15 one should bear in mind 
(a) that there are two vectors i.e. + p ( n ) -  con- 
tdbuting from each shell, (b) that 3"3 may be 
written here in terms of the one dimensional trans- 
form 3"t since 3"3 = (1/2703"1, and (c) that 3"1 is an 
even function. Equation 15 reduces to 

rE(x) _ (271.)1, 2 E a(rt) {3"1 (0) -- 23", (p(n)) 
#oH2e n',n" 

X cos (p(n)x)}-- bo3"l (0) -- 2b(n)71 (p(n)) 

x cos (p(n)x). (16) 

The position dependent pinning force per unit 
area is then 

d 
fp(X) = -- ~ (fiE) = -- (27r) '/2 , oHe  2 

X ~ [a(n) + b(n)] 2p(n) 7t (p(n)) 
n l , n  Cr 

x sin (p(n)x). (17) 

The FLL will shift position relative to the pinning 
plane in response to a driving force until at the 
critical current, Je, the maximum pinning force is 
generated. Finding this position of maximum pin- 
ning analytically is not trivial however; although 
a(n) and b(n) decrease in magnitude as the shell 
index, n, rises, a number of shells must still be 
retained in the summation at all except the highest 
h. In practice the pinning force is calculated by 
computer, so the problem of maximization may be 
solved by scanning a range of values ofp(n)x  from 
zero to 27r. Since Orientation 2 occasionally pro- 
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Figure 3 The n o r m a l i z e d  ele- 

m e n t a r y  p inn ing  force,  in Orien-  

t a t i o n  1, against  g~ x.  g l  x = 0 

cor responds  to  a F L L  row  coin- 

c iden t  w i t h  the  defec t  p lane ;  

g~x = 2~r is equ iva len t  to one  
row  spacing.  

duces greater pinning, the maximum at both 
orientations must be compared to determine the 
overall maximum pinning force per unit area,fp. 

The positional dependence of fp (Orientation 
1) for pinning at a grain boundary in Pb-18%Bi 
alloy is shown in Fig. 3. The general features of 
Fig. 3 are typical of flux .pinning at a positive K 
modulation. The interaction is repulsive at the 
fluxoid row positions. For high field (for example 
h = 0.9 in Fig. 3) the energy passes through a 
minimum half-way between the rows;fp reaches a 
maximum when the nearest row is pushed to with- 
in one quarter row spacing of the defect plane. At 
lower fields the attractive contribution of the 
I ffl 4 term in Equation 3 creates a double energy 
well and shifts the maximum in fp. 

3. The high field approximation 
3.1. The dependence on temperature and 

reduced field 
Unless specific calculations are performed Equa- 
tion (17) gives one little insight into the general 
behaviour of the pinning force. Certain approxi- 
mations may be made in the regime of very high 
field, however which greatly simplify Equation 
17. For h > 0.9 a(1) is the only significant Fourier 
coefficient. Physically, this means that I~ 12 has a 
cosine-like form and that I ff 14 , since it is propor- 
tional to (1 - -h )  2 , is negligible at high h. The 
coefficient a(1) approaches ( l - - h ) / 6  at high 
field [1], and since maximizing fp(X) now simply 
amounts to setting Ig~x] = n/2 the high field pin- 
ning approximation becomes 

j~p --~ [(270'/2/3] (1 - -h)  ~oH2eg,3't(g,). (18) 

Recalling that B = hVoHe2 and that a~ = (2~bo/ 
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(3) 1/2)/B, and defining Co = (2q5o/(3) 1/2)1/2, o n e  

may write ao = Co/(hgoHe2) 1/2 �9 Using this form 
ofao in the definition o fg t ,  gl = 41r/(3)U2ao, 

(327r3 1 1/2 ,~/2 
~___ , jr4r2/J-l/2 /,~1/2{ 1 __ h) 

fP \ 27 / Co ""c"c=  - ,1 

x 3't 0(3) 1/2 [/~ohge2 ] ,/2 . (19) 

To emphasize the field and temperature depen- 
dence, non-relevant terms may be consolidated in 
the constants A and D, and the dependence on 
temperature (T) may be made explicit: 

/ p ~  2 1/2 1/2 --AHc(T)Hr (T)h (1--h)'h(Dhl/2H~/a2(T)). 

(20) 
The u2~ru2 temperature dependence and the L.t O'" e2 

hl/2(1 - h )  field dependence are familiar from the 
literature. If ~/~ is a slowly varying function of g 
near gl, if for instance 6~/K is sharply peaked 
at x = 0 so that its transform is flat in reciprocal 
space, then the temperature dependence of "/'t 
may be ignored. The function will have an impor- 
tant effect however if it varies rapidly near g~, for 
instance if the fiK/K function extends a distance of 
roughly 1/gt from the defect plane. 

It is instructive to compare the results of the 
full-field and high field formulae for a specific 
example. Fig. 4 shows fp against h for pinning by 
a grain boundary in Pb-16%Bi, using both Equa- 
tions 17 and 19. Obviously the high field approxi- 
mation is poor for most of the field range. 

3.2. The  e f fec t  of  til t ing the  pinning plane 
Pinning planes in real materials will of course be 
neither infinite in extent nor all aligned parallel 
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Figure 4 A comparison of fp with the high-field approxi- 
mation; the example is a grain boundary in Pb-16%Bi. 
The dashed line is h t/2(1 --h), where h = B/Bey 

to the field direction. If tilting of the defect plane 
relative to the FLL is allowed, however, 6E(r) 
becomes very difficult to evaluate. Some limited 
insight nevertheless may be gained by making the 
high field assumptions of b(n) = a(n > 1) = 0 and 
a(1) = (1--h) /6 .  If 0 is the tilt angle, then (for 
Orientation 1) 

[ ~ 1 2 -  1 2--- cos (2ny]__ cos ([xcosO--zsinO](3) ~--:ff 
1 - -h  3 \ ao  ] 

• - - c o s  - = +  
3 

(21) 

If the defect plane is cut off sharply at height t 
and breadth a then 

73(g) = 7t (gx) Da(gs) Dt(gz), (22) 

where 

1 sin (kg/2) 
D~(g) = ( 2 7 0 1 / 2  g/2 (23) 

where k is either a or t. Having Iffl 2 and 7a one 
may proceed as before to calculate)~. The result is 
complex, but may be approximated by 

( a~ ) 2 (l--h)%(gt cos fp ~ (6n),/2 #oHegt 0) 

1 [27rt sin 6 \ 
x t sin---O sin I ~ }  (24) 

The dependence on 0 may be divided into two 
parts. 7t (gl cos 0) will be important only if % is 
rapidly varying near gt or if 0 is large. The second 
term, which is of the form 

sin (ct sin 0) 

t sin 0 
(25) 

(with c a constant in 0) will severely limit the 
breadth of the fp against 0 profile unless t is very 
small. In most cases where multiple pinning planes 
exist in a specimen only a very small fraction can 
be simultaneously aligned with the applied field 
and therefore a narrow fp against 0 profile could 
severely limit the measured global pinning density 
F.. 

The measurements by Das Gupta et al. [8] of 
flux pinning by a single grain boundary in Nb seem 
to come close to the ideal case of pinning by a 
large, perfectly fiat, pinning plane. The half-height 
width was found to be A0 ~--1~ t was 0.3 cm. 
Equation 24 however predicts a vanishlngly small 
A0. This discrepancy, and the fact that such an 
extreme requirement for alignment would make the 
experimental observation of planar pinning virtually 
impossible, leads us to conclude that considerable 
bending occurs in the FLL at small 0 to locally 
bring the FLL parallel to the pinning plane. Such 
bending has of course not been allowed for in the 
model. Rudimentary calculations show that purely 
elastic bending is not sufficient. However many 
electron microscopy studies (using a decoration 
technique) have revealed a high density of defects 
in the FLL. Such defects might produce an effec- 
tive "softening" of the FLL and allow much greater 
bending. 

4. Conclusions 
The component of the elementary flux pinning 
force due to electron scattering at a planar defect 
has been calculated in a manner valid for all 
h > 0.1, since (a) it includes the effect of the 
1~ 14 term in the Ginzburg-Landau perturbational 
expression and (b) it retains all significant Fourier 
components of t~ ] 2 and 1~ 14. The model's most 
serious drawback is that it assumes a perfectly 
rigid FLL, which may neither distort in the plane 
normal to the applied field or bend away from 
the field direction. Other limitations include the 
requirement that 8K/K be small, which may 
weaken the validity of the calculation in some 
cases. 

Pinning is found to be highly dependent on 
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Figure A1 The Fourier coef- 
ficients a(n) of I~012 , as a func- 
tion of reduced induction. The 
dashed line is (1 --h)/6. 

FLL/defect  plane orientation, with the orientation 
shown in Fig. 1 producing the largest,pinning for 
most fields and materials; a 30 ~ rotation of  the 
above orientation is sometimes more effective 
near h = 0.3. It is argued that an experimental 
measurement will always record the maximum 
pinning attainable by rotation of  the FLL around 
the field axis. The interaction at x = 0, i.e. when 
the defect plane and FLL row are coincident, is 
repulsive; the maximum pinning force is exerted 
at a FLL defect spacing of roughly one quarter 
FLL row spacings. The high field approximation 
is shown to be seriously in error except for very 
high fields. At high field the dependence on h is 
approximately h 1/~ (1 -- h), and the temperatures 
dependence is largely contained in ,lu2ul/2e ~1 e2 �9 At 
lower fields the h and T dependences cannot be 
expressed in closed form and vary somewhat with 
material. 

Appendix: The Fourier coefficients of 
I ~ l  ~ and [ ~ l  4 

In order to evaluate Equation 17 for the element- 
ary pinning force the Fourier coefficients av and 

2798 

by (or in the shell notation a(n) and b(n)) must 
be given numerical values. The a(n) values have 
been published by Brandt [11] for the range 
h > 0.1. These a(n) values are shown in Fig. A1. 

The first step in finding the b v (or b(n)) values 
is to convert the cosine series for [ $ [2 and i~ [a in- 
to a complex Fourier series. From Equation 9, 

I~ 14 = ~ by [�89 exp (igv'r) + �89 exp (~ 'gv ' r ) ]  

v=o (A1) 

For every gv in the sum there is a (-- gv), so 

Ir [a = ~ by exp (igv'r). (A2) 
P=O 

We can define C 1 such that 

1~ [2 = ~, Ci exp ( igj . r )  (A3) 
j=O 

By comparing Equations 8 and A3 one may show 
that  

Co = Z a~ (A4) 
p~ao  

and 
Cj = --aj. (A5) 

The second step in finding the by requires the con- 
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Figure A2 The Four ie r  coef- 
ficients b(n) o f  I ~ 14 , as a func-  
t ion o f  reduced induct ion .  

volution theorem in reciprocal space: let t(r) and 
s(r) be two functions in real space and let fig) and 
g(g) be their Fourier transforms; then 

j" [(g') g(g -- g') dg' = y[ t ( r )"  s(r)] (A6) 

where 3- is the Fourier transform operator, if 
t = s  = tqJl 2 then 

J ( [  ~b 14) = f 02 (g') ~2 (g -- g') dg'. (A7) 

But from Equation A2 it is clear that Y(I ~b 14) 
evaluated at some particular gk is simply bk, so 

b k = f cb2 (g') ~b2 (gk -- g') dg'. (A8) 

To evaluate the integral we may Fourier transform 
Equation A3, which gives 

(bz (g') = E Cs(Zlr)-3/2 j" exp (igs" r) 
j=O 

• exp (-- ig' "r) dr = Z CiS(g'--gj)- 
S=o (A9) 

Similarly, 

0 2 ( g k - g ' )  = Y.' C s S ( g ' - ( g k - g j )  ). (A10) 
j=0 

Substituting Equation A9 and A10 into Equation 
A8, 

--j" E css(g' E c.8 lg' - -g . ) ]  dg' 
j=0 n=0 

(All )  

The C~ are determined by their associated recipro- 
cal lattice vectors so for increased clarity one may 
use the notation C(g~) instead. The integral of 
Equation A11 vanishes unless gs = gk -- g.,  so 
with some manipulation one finds that 

bk = ~ C(gs) C(gs + gk) (A12) 
j=O 

This result (but without derivation or numerical 
evaluation) has been previously published by 
Brandt [ 14]. 

To help visualize the computation ofbk, imagine 
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two overlapping sets of reciprocal FLL points, 
shifted relative to each other by gt~. A pair of C 
values is associated with each superimposed pair of 
lattice points, b~ is found by multiplying the C of 
one member of each pair of points times that of- 
the other member, then summing all the products. 
The values of b~ (or alternately b(n)) are shown in 
Fig. A2. 
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